Produkt (matematik)
Från Rilpedia
Produkt eller faktum är resultatet av multiplikation.
Innehåll |
Produkt av tal
Resultat av en multiplikation
Resultatet av en multiplikation kallas produkt. I uttrycket
kallas a och b faktorer medan c kallas produkt.
Produkttecken
Om ett större antal faktorer ska multipliceras ihop, kan produkten ibland skrivas förkortat.
betyder produkten av alla faktorer f(k) där k varierar från a till b. Tecknet ∏ är den grekiska bokstaven pi och kallas här produkttecken. Produktnotationen är särskilt användbar beträffande produkter med oändligt eller okänt antal faktorer.
Som exempel kan produkten
- ,
det vill säga n-fakultet, skrivas
- .
Se även
Produkt av vektorer
Vektorer kan multipliceras till skalärprodukter och vektorprodukter. I funktionalanalys talar man om inre produkt och yttre produkt.
Cartesisk produkt
Produkten (även kallad den cartesiska produkten) av två mängder A och B är mängden av alla ordnade par (a, b) vars första element a finns i A och vars andra element b finns i B. Produkten av A och B skrivs , så definitionen kan sammanfattas .
Man kan också bilda cartesiska produkter av ett större antal mängder. Produkten A × B × C av de tre mängderna A, B och C består av alla trippler (a,b,c), där a ∈ A, b ∈ B och c ∈ C. Allmänt gäller att om (Mi)i∈I är en familj av mängder över en indexmängd av godtycklig storlek, så definieras den cartesiska produkten av denna familj genom
- .
När indexmängden består av de n första positiva heltalen, alltså I = { 1, 2, ..., n}, så skrivs produkten hellre som
- .
Formellt sett torde till exempel A × B × C, (A × B) × C och A × (B × C) vara olika mängder, eftersom oftast (a,b,c), ((a,b),c) och (a,(b,c)) definieras på ett sådant sätt att de är olika. I praktiken benandlar man dock i allmänhet dessa som samma mängd genom att man identifierar trippeln och de två "blandade" paren.
Produkten A × A kan också skrivas A2, A × A × A skrivs också A3, ock så vidare. En vanlig tillämpning är beteckningen för reella talplanet, eller R2.
Exempel:
- {a, b, c} × {d, e} = {(a, d), (a, e), (b, d), (b, e), (c, d), (c, e)}