Genetik

Från Rilpedia

(Omdirigerad från Genetisk)
Hoppa till: navigering, sök
Wikipedia_letter_w.pngTexten från svenska WikipediaWikipedialogo_12pt.gif
rpsv.header.diskuteraikon2.gif
Illustration av hur ett dominant anlag ärvs.

Genetik, ärftlighetslära, är en vetenskap inom biologin som studerar hur egenskaper nedärvs, hur genomet (arvsmassan) är uppbyggt och fungerar, hur förändringar av generna (arvsanlagen) uppstår, samt den biologiska variationen.

Alltsedan förhistorisk tid har människorna förbättrat husdjur och odlade växter genom att använda indirekt kunskap om hur egenskaper ärvs från föräldrar till avkomman för att genomföra mer eller mindre systematisk avel. Men det vetenskapliga studiet av de genetiska mekanismerna tog sin början först med Gregor Mendel vid mitten av 1800-talet. Mendel kände inte heller till de grundläggande molekylära genetiska mekanismerna. Men genom systematiska kontrollerade experiment och noggrann statistik kunde han klarlägga generella principer för hur nedärvningen går till, till exempel att det som ärvs är ett antal enskilda särdrag, arvsanlag, som ärvs oberoende av varandra, det som senare kom att kallas gener.

Arvsanlagen finns i oerhört långa molekyler, DNA, som vardera består av en kedja av nukleotider. Dessa kedjor sitter ihop parvis och bildar något som ser ut som en spiralskruvad stege. Nukleotiderna sticker ut åt sidan från vardera kedjan. I DNA används fyra olika nukleotider. De är olika långa, men matchar varandra kort mot lång, så att varje steg i stegen blir ungefär lika långt. Den ordningsföljd som nukleotiderna har i kedjan utgör den genetiska informationen. Det här är lite likt hur ordningsföljden mellan bokstäverna på en boksida gör att vi kan utläsa ett meddelande. Även post

Generna motsvarar delsträckor längs kedjan. Sekvensen av nukleotider i genen översätts i två steg till en sekvens av aminosyror som bildar ett protein. En grupp om sex nukleotider motsvarar en aminosyra. Denna motsvarighet kallas den genetiska koden. Aminosyrasekvensen avgör vilken form proteinet får och därmed vilken funktion det kan fylla. I stort sett alla uppgifter som behöver utföras i den levande cellen sköts av proteiner.

Genetiken har stor betydelse för vilken yttre form och vilket beteende en organism ska få. Men den är inte allenarådande. Miljön som organismen lever i påverkar också hur den blir. Slutreslultatet formas av ett samspel mellan arv och miljö. Som exempel bestäms den längd ett människobarn uppnår i vuxen ålder både av de gener det får av sina föräldrar och av hur mycket näring det får, vilken näring det får, vilka sjukdomar det råkar ut för och hur mycket det motionerar.

Innehåll

Generna styr proteintillverkningen

Generna spelar sin huvudsakliga roll när cellen tillverkar en sorts molekyler som kallas proteiner. Genen innehåller den informaton som avgör hur proteinerna ska bli. Cellerna är de allra minsta självständiga delarna i organismer. En människokropp innehåller många miljoner celler, medan mycket små organismer, till exempel bakterier, består av en enda cell vardera. En cell är som en mycket liten och mycket komplicerad fabrik som kan tillverka alla beståndsdelar som behövs för att bygga upp en kopia av fabriken själv. Precis detta inträffar när cellen delar sig.

Den principiella arbetsuppdelningen i celler är enkel - generna innehåller instruktionerna för arbetet och proteinerna utför arbetet. Uppgifterna kan till exempel bestå i att bygga en ytterligare kopia av cellen eller att reparera skador i den. Varje proteintyp är en utpräglad specialist och utför endast ett visst speciellt jobb. Så när en cell ska förändra sina aktiviteter måste den tillverka nya typer av proteiner. Om en cell ska gör någonting snabbare eller långsammare kan den reglera detta genom att skapa fler proteiner för den uppgiften (snabbare) eller färre (långsammare). Därför varierar uppsättningen proteiner i cellen från tid till annan. Men generna för alla proteinerna finns alltid tillgängliga.

När genen ska användas kopieras den först från DNA till RNA. RNA översätts sedan till protein i proteintillverkningen.

Protein består av långa kedjor av aminosyror. Kedjorna tillverkas som pärlband. En aminosyra i taget läggs till i ena änden. Varje gång en aminosyra ska läggas till finns 20 olika att välja mellan. Det är genen som avgör vilken aminosyra läggs till. Ordningsföljden mellan nukleotider i DNA bestämmer ordningsföljden mellan aminosyror i proteinet. Proteinet viker sedan ihop sig till en kompakt form, lite grand som ett oordnat nystan. Den tredimensionella form som proteinet då får bestäms av den ordningsföljd som aminosyrorna sitter i längs kedjan och det är denna form som i sin tur bestämmer vad proteinet kan göra, vad det har för funktion. En del protein har till exempel inbuktningar och utbuktningar som stämmer precis med ytan på ett annat protein. Det gör att de två proteinerna häktar fast i varandra och bildar en större enhet tillsammans. Andra proteiner är enzymer, det vill säga fungerar som små maskiner som ändrar andra molekyler till exempel genom att ta isär dem.

Kopiering av DNA till DNA, en kedja blir två.

Informationen lagras i DNA i form av en ordningsföljd av nukleotider längs DNA-kedjan. Fyra olika nukleotider kommer här till användning: adenin (A), Tymin (T), guanin (G) och cytosin (C). Dessa översätts till en sekvens av aminosyror. De regler som översättningen följer kallas den genetiska koden. När en gen ska användas kopieras DNA-sekvensen först till den mycket likartade molekylen RNA. Detta görs på det mycket korta delavsnittet av DNA där en viss gen finns. Denna speciella kopieringsprocess kan också kallas transkription. RNA-kopian förs sedan genom ett mycket stort molekylkomplex som kallas ribosom. Här översätts nukleotidsekvensen i RNA till en motsvarande sekvens av aminosyror enligt den genetiska koden. Den här procesen kan också kallas proteinsyntes. Det nya proteinet vecklas sedan ihop till den form det ska ha för att kunna fylla sin uppgift.

Om sekvensen av nukleotider förändras så förändras också genen. Detta kan också få till följd att den motsvarande sekvensen av aminosyror i proteinet blir annorlunda. Om en del av genen tas bort blir proteinet kortare och kanske inte fungerar. Detta är förklaringen till att organismer med olika alleler kan ha olika egenskaper, motsvarande proteiner fungerar olika. Som exempel beror hårfärgen på hur mycket melanin (mörkt pigment) som byggs in i håret när det växer fram. En person med normal uppsättning gener för tillverkning av melanin får mörkt hår. Men om en av allelerna har en sekvens som är så annorlunda att motsvarande protein inte fungerar, då produceras mycket mindre melanin, och personen blir ljushårig.

Historik

Människor har i alla tider undrat över hur exempelvis människobarn kommer att likna sina föräldrar, men inte vara några exakta kopior av dem. Inte förrän 1865 publicerade Gregor Mendel sina rön om slumpmässig kombination av ärftlighetsanlag i avkomma, och de uppmärksammades inte förrän i början av 1900-talet. När Jean-Baptiste de Lamarck och Charles Darwin lade fram sina teorier om en evolution visste egentligen ingen av dem hur egenskaper nedärvs. Båda trodde till exempel att förvärvade egenskaper, som exempelvis muskelstyrka, ärvdes, vilket orättvist kommit att förknippas enbart med lamarckism.

Redan i förhistorisk tid började människan använda genetisk kunskap för domesticering och förädling av växter och djur. Genetiken tillhandahåller viktiga verktyg som används i den moderna forskningen för att undersöka funktionen hos specifika gener, till exempel genom kartläggning av genetisk interaktion. I organismerna är den genetiska informationen vanligtvis lagrad i den kemiska strukturen hos specifika DNA-molekyler, som i sin tur finns i kromosomer.

Friedrich Miescher (18441895) beskrev första gången 1869 en substans som han kallade ”nuklein”, som han funnit i cellkärnor. Något senare lyckades han framställa detta ämne i ren form genom att utgå från laxsperma, och 1889 fick ämnet namnet ”nukleinsyra” av Mieschers elev Richard Altman. Man fann att ämnet endast existerade i kromosomerna.

Varken nukleinsyrans eller cellkärnas funktion var dock klarlagd vid denna tid. När Gregor Mendel upptäckte ärftlighetsprinciperna på 1860-talet, och när Mendels resultat återupptäcktes i början av 1900-talet, var det oklart var i cellerna arvsanlagen fanns, och vilka molekyler som var bärare av dem.

1930-talet genomförde Max Delbrück med flera experiment som visade att man genom att utsätta celler för röntgenstrålar kunde förändra de ärftliga egenskaperna hos cellerna. Det föreslogs att kromosomernas kemiska struktur på något sätt bestämde dessa ärftliga egenskaper. Precis hur denna kemiska struktur kunde påverka en organisms egenskaper och beteende föreföll oförklarligt vid denna tidpunkt. De kemiska undersökningarna av olika nukleinsyrepreparat gav alltid samma resultat i form av de fyra typerna av nukleotider i ungefär samma proportioner. Kromosomernas kemiska uppbyggnad föreföll alltså enkel och likformig vilket stod i stark kontrast till de levande organismernas komplexitet, mångfald och variation.

1950-talet pågick forskning om DNA-molekylens struktur endast på några få ställen. En grupp forskare i USA leddes av Linus Pauling. I England intresserade sig två grupper för problemet. Vid University of Cambridge fanns bland andra Francis Crick och James Watson och vid King's College i London arbetade Maurice Wilkins och Rosalind Franklin med att med hjälp av röntgendiffraktion fastställa DNA-molekylens struktur. 1948 hade Pauling upptäckt att många proteiner hade en helixstruktur, och de första undersökningarna med röntgendiffraktion antydde att även DNA hade en sådan struktur, men någon detaljerad förståelse av molekylens uppbyggnad hade man ännu inte.

Crick och Watson försökte konstruera rimliga modeller utgående från kända fakta, men antalet möjligheter var fortfarande många. Ett genombrott skedde när den österrikiske kemisten Erwin Chargaff besökte Cambridge och beskrev ett av sina experiment. Han hade fastställt att prover av DNA inte alltid hade samma proportioner av de olika nukleotiderna, men att de alltid hade lika koncentration av adenin som av tymin och lika koncentration av guanin som av cytosin. Crick och Watson började fundera på strukturer som innefattade två trådar med kompletterande nukeotidbaser bundna till varandra. Med hjälp av information från Rosalind Franklins röntgendiffraktionsbilder lyckades de finna en modell som stämde med all kända fakta. Den hade en helixstruktur med 2 nanometers tjocklek och en höjd av cirka 3,4 nanometer per varv omfattande cirka 10 baspar. De skyndade sig att publicera sina idéer innan Franklin själv hade offentliggjort några av sina resultat.

Det har efteråt blivit en kontroversiell fråga hur mycket Watson och Crick varit beroende av Franklins data för att komma fram till sin modell, och många har anklagat dem för att inte ge henne tillräckligt erkännande av hennes betydelse i upptäckten av DNA-molekylens struktur. Mest omdebatterat är det faktum att Wilkins tydligen visat Franklins bilder för Watson och Crick när Franklin inte själv var närvarande. Wilkins, Watson och Crick fick nobelpriset i medicin 1962 för sina upptäckter. Vid denna tidpunkt hade Franklin avlidit.

Watsons och Cricks modell väckte stor uppmärksamhet när den publicerats. Efter att ha kommit fram till sin modell 21 februari 1953, gjorde de sina första uttalanden den 28 februari. Den 25 april publicerades deras artikel ”A structure for Deoxiribose Nucleic Acid”. Forskningen om genetikens och molekylärbiologins grundvalar tog sedan fart. I en förläsning 1957 redogjorde Crick för sina idéer om kopplingen mellan DNA, RNA och proteiner: ”DNA ger RNA ger protein”, något som har kommit att kallas molekylärbiologins ”centrala dogm”. Crick och hans medarbetare fortsatte sedan under slutet av 1950-talet med arbetet med att knäcka den genetiska koden.

Tillämpning

Huvudartikel: Genteknik

Det finns många tillämpningar av genteknik, bland annat genterapi, genmodifikation och kloning.

Nedärvning

Autosomal nedärvning drabbar lika oberoende av kön. Förändringen sitter inte i könskromosomen.

Intermediär nedärvning är när ingen av generna i ett genpar dominerar över den andra utan båda bidrar till organismens fenotyp.

Polygen nedärvning innebär att många gener tillsammans ger en egenskap, i lägre eller högre grad. Varje gen var för sig, ger en ganska liten eller ingen effekt alls, men som tillsammans ger stor effekt.

Ärftlighet

Ärftlighet är ett mått på hur mycket en individs egenskaper beror enbart på de gener den fått från sina föräldrar. Ärftligheten kan uttryckas med en siffra mellan 0 och 1 (eller 0 och 100 %) där 1 betyder att en viss egenskap enbart beror på genotypen och inte alls på miljön. I praktiken är den högsta ärftlighet man funnit 0,97, som gäller för fingeravtryck hos enäggstvillingar. Kroppsmått har ofta en hög grad av ärftlighet, medan livslängd och antal avkomma har låg ärftlighet.

Se även


Personliga verktyg