Aritmetisk funktion
Från Rilpedia
Version från den 13 september 2008 kl. 09.40 av Calandrella (Diskussion)
En aritmetisk funktion (eller talteoretisk funktion) f(n) är inom talteorin en funktion med definitionsmängd alla positiva heltal och värdemängd de komplexa talen. Med andra ord är en aritmetisk funktion en följd av komplexa tal.
De viktigaste aritmetiska funktionerna är de additiva och de multiplikativa.
En viktig operation på de aritmetiska funktionerna är Dirichletfaltning.
Exempel
För exempel på additiva och multiplikativa funktioner se dessa artiklar. Nedan följer några exempel på aritmetiska funktioner som varken är additiva eller multiplikativa.
- c4(n) - antalet sätt som n kan uttryckas som summan av fyra kvadrater på icke-negativa heltal, där man gör skillnad på summandernas ordning. Till exempel:
-
- 1 = 12+02+02+02 = 02+12+02+02 = 02+02+12+02 = 02+02+02+12,
- dvs c4(1)=4.
- P(n), Partitionsfunktionen - antalet representationer av n som summan av positiva heltal där man inte skiljer på summandernas ordning.
Till exempel: P(2 · 5) = P(10) = 42 och P(2)P(5) = 2 · 7 = 14 ≠ 42.
- π(n), Primtalsfunktionen - antalet primtal mindre än eller lika med ett givet tal n. Det gäller att π(1) = 0 och π(10) = 4 (primtalen under 10 är 2, 3, 5 och 7).