Oktonion
Från Rilpedia
Oktonionerna är en icke-associativ utvidgning av kvaternionerna.
De upptäcktes av John T. Graves år 1843, och oberoende av Arthur Cayley, som publicerade det första arbetet om dem 1845. De kallas ibland Cayleytal eller Cayleys algebra.
Oktonionerna bildar en 8-dimensionell algebra över de reella talen, och kan därför ses som oktetter av reella tal. Varje oktonion är en reell linjärkombination av enhets oktonionerna 1, e1, e2, e3, e4, e5, e6 and e7, vars multiplikationstabell ser ut som följer.
· | 1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
1 | 1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
e1 | e1 | -1 | e4 | e7 | -e2 | e6 | -e5 | -e3 |
e2 | e2 | -e4 | -1 | e5 | e1 | -e3 | e7 | -e6 |
e3 | e3 | -e7 | -e5 | -1 | e6 | e2 | -e4 | e1 |
e4 | e4 | e2 | -e1 | -e6 | -1 | e7 | e3 | -e5 |
e5 | e5 | -e6 | e3 | -e2 | -e7 | -1 | e1 | e4 |
e6 | e6 | e5 | -e7 | e4 | -e3 | -e1 | -1 | e2 |
e7 | e7 | e3 | e6 | -e1 | e5 | -e4 | -e2 | -1 |
Se även Hyperkomplexa tal.
Externa länkar
- Oktonionerna - en artikel av John C. Baez (på engelska)