Assembler

Från Rilpedia

(Omdirigerad från Assemblering)
Hoppa till: navigering, sök
Wikipedia_letter_w.pngTexten från svenska WikipediaWikipedialogo_12pt.gif
rpsv.header.diskuteraikon2.gif

Assembler eller assemblyspråk är ett sätt att uttrycka maskinkoden för en dators processor på ett sätt som människor kan läsa och skriva. Maskinkod består av mönster av ettor och nollor och är i allmänhet svår för programmerare att använda. Assembler tillåter att bitmönstren istället skrivs med bokstäver och siffror, så kallade mnemnotekniska symboler, vilket väsentligen underlättar programmerarens arbete. Vidare tillhandahåller assembler möjligheten att använda symboliska namn för minnesadresser.

Det finns assemblerspråk definierade för alla processorer, men varje typ av processor har sin egen assembler. Detta gör att det i allmänhet inte går att använda ett assemblerprogram skrivet för en processor på en annan typ av processor. För att göra det möjligt att flytta program mellan olika processortyper används i stället ett högnivåspråk.

En kompilator för ett högnivåspråk översätter programkod skriven i språket till processorspecifik maskinkod och genom att använda olika kompilatorer kan samma högnivåkod användas för olika processortyper.

Det förekommer även att kompilatorn översätter högnivåspråket till en mellannivå, intermediärkod, som vid körningsögonblicket interpreteras (tolkas). En sådan mellannivå tar ofta mindre plats att lagra, och gör det möjligt att ha maskinneutral körbar kod. Välkända exempel på detta är p-kod för Pascal, och byte-kod för Java. NOP är en operation i assembler som står för No Operation.

Innehåll

Översättning till maskinkod – och omvändningen

Program skrivna i assembler översätts med en assemblator till maskinkod. Maskinkoden som är binärkod kan via ett disassemblerande program återöversättas till assemblerkod (motsvarande är praktiskt inte möjligt i högrenivåspråk pga alltför stort avstånd till maskinkod).

Nackdelen är att läsbarheten blir nedsatt, då alla hopp- och minnesadresser måste döpas om till ett symboliskt namn med ett löpnummer, eftersom ursprungskoden inte finns tillgänglig. Det medför att om man vill veta programmets funktion måste man följa koden instruktion för instruktion. För att underlätta, kan en monitor i stället användas. Dessa har normalt en disassemblator inbyggd samt en trace-funktion som utför en instruktion i taget och mellan dessa visar innehållet i register, stack och arbetsareor. Sedan inväntas användarens respons innan nästa instruktion utförs. Typiska responser är "nästa instruktion", "hoppa till annat ställe", "sätt in 'x' i register/minnesarea", "avbryt", "kör till nästa brytpunkt" samt "kör till slutet".

Exempel

Några exempel på assemblerkod för olika processortyper.

IBM OS/360 assembler (och senare)

Exempel på assemblerkod från IBMs stordatorer (eng: mainframe). Den ursprungliga OS/360-assemblern kom till kring 1960 på IBMs laboratorium på Lidingö, och torde ha stått modell för de flesta av alla förekommande assemblerspråk därefter.

Inom IBM-världen kallas språket för ASM (eller BAL Basic Assembly Language; det är ofta en generationsfråga). ASM torde vara det vanligaste, kompletterad med beteckning för version, miljö mm, t ex S/390 ASM, ASM-H eller High Level Assembler (HLASM).

Från början skrevs alltid typ "OS/360", där OS står för Operating System, för att skilja från "DOS/360" (Disk Operating System) som innebar att miljön var minidator inte stordator. När minidatorerna fasade ut, började beteckningar typ "S/390" bli allmänna.

Egentligen är det så att när man pratar om hårdvaran, säger man t.ex. "S/370"; och pratar man om motsvarande operativsystem, säger man "OS/370".

          AMODE ANY                 Accept both 24 and 31 bit addresses
          RMODE 24                  May also be called by 24 bit address programs
 IEFBR14  CSECT ,                   Control section start, module name and entry point
          USING IEFBR14,15          Establish addressability; reg 15 contains address of entry point
          B     SAVE+72             Skip over PgmId & SaveArea
          DC    AL1(L'PGMID)        Length of name
 PGMID    DC    C'IEFBR14'          The name itself
 SAVE     DC    18F'0'              Own save area; contains registers of calling program
          STM   14,12,12(13)        Save regs of calling program
          ST    13,SAVE+4           Caller's save area addr
          LR    14,13               Retain caller's save area addr
          LA    13,SAVE             Local save area addr
          USING SAVE,13             Switch addressability so we may use reg 15
          ST    13,8(14)            Report own save area addr to calling pgm
 * In case you actually want something done, put it here
          L     13,SAVE+4           Restore save area reg of calling pgm from own save area
          LM    14,12,12(13)        Restore regs of calling pgm
          SR    15,15               Zero register 15 = return code "ok" ==> RC or CC
 *                                  If something went wrong, put another return code in register 15
          BR    14                  Return addr in R14  -- go back to calling pgm
          END   IEFBR14             End assembly and specify default entry point for Linkage Editor / Loader
Det lilla programmet ovan heter IEFBR14 som IBMs klassiska dummy-program (den utför alltså "ingenting"), men är skriven fritt efter hur det troligen ser ut i senaste 31-bitsadress-version, och kan därför knappast bryta IBMs eventuella copyright. Det är alltså inte kopierat från något ställe.

I den allra första versionen innehöll programmet endast raden " BR 14 " (hoppa tillbaka till anropande program), därav namnet, men flera ändringar krävdes för att den skulle anpassas till IBMs konventioner för hur program ska se ut för att fungera i alla sammanhang och med nyare versioner av hård- och mjukvara.

Det kan tyckas att detta är rätt mycket kod för att faktiskt inte utföra någonting, men mainframe-världen är mer komplex än den är i andra miljöer. Rätt tidigt utvecklades conditional assembly ("villkorlig assembler"), vanligen kallad macroassembler även i andra miljöer. Med detta kunde snarlika grupper av återkommande programrader ges ett namn och med vissa anropsparametrar kan ovanstående kod i ett typiskt program t ex reduceras till:

          AMODE ANY                 Accept both 24 and 31 bit addresses
          RMODE 24                  May also be called by 24 bit address programs
 IEFBR14  SAVE
 ...
          RETURN RC=8               ..(at any point of error condition)
 ...
          RETURN
          END   IEFBR14             End of assembly

Här måste macrona SAVE och RETURN vara utförligt fördefinierade antingen i ett särskilt bibliotek eller lokalt i programkoden. IBM har fördefinierat flera hundra standardmacron; varje enskilt företag kan ha minst lika många egna och vissa program har sin grupp som då är särskilt programtypiska.

i386/MS-DOS assembler

Följande kod kan köras på ett i386/MS-DOS-system och skriver ut texten "Hello, World!" på skärmen samt avslutar programmet. Programmet använder sig av instruktionen "int" för att anropa operativsystemet för att skriva ut texten på skärmen. Programmet utnyttjar möjligheten att använda symboliska namn; namnet "hello" är ett symboliskt namn för den minnesadress texten "Hello, World!" befinner sig på.

 mov    ah,9
 mov    dx,offset hello
 int 21h
 mov    ah,4Ch
 int 21h
 hello  db 'Hello, World!',0dh,0ah,'$'

MIPS-assembler

Följande är ett utdrag ur programkoden för en enkel processhanterare för multitasking på en MIPS-processor. Koden i exemplet är del av den kod som sparar undan register, pekare och stack (sw-instruktionerna) för den aktiva processen och byter till en annan (lw-instruktionerna).

 lbu    t5 0(t2)
 nop
 addiu    t5 t5 1
 nop
 sb    t5 0(t2)
 sw    t2 4(s1)  ; store gp
 sw    t3 8(s1)  ; store sp
 sw    t4 0(s1)  ; write back pcb1
 sw    s2 0(s0)  ; change curpcb <= pcb2
 lw    k1 0(s2)  ; change CP+4
 lw    gp 4(s2)  ; change gp <= glob2
 lw    sp 8(s2)  ; change sp
 nop
 b restore
 nop

Motorola M68k

 Adress:     MOVE.L    A0, $FF8240
             ADDI.B    #$D0, D1
             LEA       ($0400,A0), A0
             ROL.W     (A0)
             CMP.W     D1, (A0)
             BNE.S     Adress

Se även

Personliga verktyg