Alla hästar har samma färg

Från Rilpedia

Hoppa till: navigering, sök
Wikipedia_letter_w.pngTexten från svenska WikipediaWikipedialogo_12pt.gif
rpsv.header.diskuteraikon2.gif

Hästparadoxen är en paradox i form av påståendet alla hästar har samma färg som uppstår ur följande logiska resonemang, med hjälp av matematisk induktion.

Paradoxen

Som en utgångspunkt, notera att i en mängd innehållandes en häst, har uppenbarligen alla hästar samma färg. Anta nu att påståendet gäller för alla mängder med ett antal n hästar.

Låt det finnas n + 1 hästar i en mängd. Avlägsna den första hästen för att få n hästar. Med hjälp av induktionen kan man konstatera att alla hästar i denna mängd har samma färg.

Vad som återstår är att visa att även den avlägsnade hästen har samma färg. Detta är enkelt: lägg tillbaka hästen, avlägsna en annan häst och använd induktionsprincipen på den här mängden av n hästar. Följaktligen har alla hästar i vilken mängd n + 1 som helst, samma färg. Genom induktionsprincipen har vi visat att alla hästar har samma färg.

Förklaring

Resonemanget hänger på att de två delmängderna av hästar som används har samma färg, vilket inte gäller för en mängd bestående av två hästar. Säg att vi har en mängd bestående av häst A och häst B. Om vi tar bort häst A har vi bara häst B kvar i mängden och då har uppenbarligen alla hästar i mängden samma färg. Samma sak gäller om vi tar bort häst B. Men de två mängderna innehållandes endast häst A och häst B har inga gemensamma element, så vi kan inte vara säkra på att häst A och häst B har samma färg.

Referens

Personliga verktyg